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Quantization of weakly nonlinear lattices: Envelope solitons
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A method of quantizing weakly nonlinear lattices is proposed. It is based on introducing ‘‘pseudofield’’
operators. In this formalism quantum envelope solitons together with phonons are regarded as elementary
quasiparticles making up a boson gas. In the classical limit the excitations corresponding to frequencies above
a linear cutoff frequency are reduced to conventional envelope solitons. The approach allows one to identify a
quantum soliton that is localized in space and to understand the existence of a narrow soliton frequency band.
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One of the most important tasks of the modern physics
atomic lattices is the experimental observation of the non
ear localized excitations that are believed to exist. Althou
in specially prepared chains of coupled oscillators such
citations have been obtained experimentally@1#, in the mi-
croscopic world their observation is hardly possible in a
rect way. A report on the observation of intrinsic localiz
modes, although in a magnetic model, appeared only
cently @2#. This raises the problem of construction of th
statistical mechanics of nonlinear lattices covering both
ear and nonlinear excitations and allowing one to desc
the contribution of the localized modes to macroscopic~mea-
surable! characteristics of solids. As a first step one has
provide the quantization of the atomic chains.

Anharmonic quantum lattices have been considered in
literature. Of two approaches developed so far, one can
classified following@3# as the number state method@3# and
the quantum inverse scattering tecnique@4#. Another method
based on exact numerical diaganonalization of a Hamilton
was developed in@5,6#, where breather modes were obtain
in a lattice with f4 on-site potential@5# and in a coupled
electron-phonon system@6#, both nonintegrable. The
breather modes were identified through the spectra and
namic correlation functions.

The approaches mentioned deal with nonlinear quan
Hamiltonians givena priori. An alternative and somewha
complementary way of introducing quantum systems
quantization that starts with a classical Hamiltonian. As
evident, canonical quantization, i.e., substitution ofc num-
bers by their operators satisfying canonical commutation
lations, can be provided formally in the case of nonline
lattices also. However, in a generic situation this method
not tractable either analytically or numerically.

At the same time, methods for the analytical descript
of nonlinear classical lattices are well elaborated today. T
are based on introducing different small parameters and
sult in various spatially localized excitations. Among the
we mention envelope solitons~ES’s! ~see, e.g.,@7#!, which
appear when the wave amplitude is considered as a s
parameter, and intrinsic localized modes or breathers~see,
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e.g., @8#!. In the case where a small parameter can be id
tified as coupling between neighbor sites quantization can
performed by the method proposed in@9#. The role of the
coupling constant magnitude in the context of quantum
tices was discussed in@5#.

In the present article we concentrate on quantization o
nonlinear lattice when the small parameter is the nonline
ity, thus allowing the existence of ES’s in the classical lim
The appropriate physical limit can be interpreted as oppo
to the one considered in@9#. Also, in contrast to previous
studies of nonintegrable quantum nonlinear lattices, the
appears to be a dynamical object, and thus allows one
construct a kinetic theory of interacting solitons a
phonons.

There are several points to be reflected by the theory
has been established that quantum nonlinear lattices ha
well pronounced soliton band in the spectrum which is e
tremely narrow for a given nonlinearity@3#. This means that
the associated object can be unambiguously identified ei
as an ES or as an intrinsic localized mode depending on
value of the frequency. Another point is the identification
the quantum ES, which must go beyond computing the
quency alone. Indeed, an important difference between
ES and a phonon is that the soliton is spatially localiz
while the phonon is localized only in momentum space. Th
we intend to obtain a quantum soliton as an object, a qu
particle, localized in space~a possible method of construc
tion of such wave packets is described in@3#!. This is in
contrast to the quantization used in field theory@10#, where a
kink, being a topological object, is considered as a vacu
state. Finally, an important property of the classical theory
that ES’s are governed in leading order by the nonlin
Schrödinger equation@7#, which means that in leading orde
they do not interact with linear phonons and can be regar
as independent quasiparticles. Thus in leading order
quantum theory must allow one to introduce creation a
annihilation operators for the quantum soliton and neglec
interactions with other quasiparticles. In this way the int
action Hamiltonian will naturally appear as a perturbati
and thus the gas of interacting quasiparticles—solitons
phonons—can be considered within the conventional per
bation technique of field theory.
©2001 The American Physical Society06-1
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We note that the approach developed below has s
points similar to one proposed in@11# for quantum optical
solitons. In particular, the quantum ES in@11# is described in
terms of the field operators~we call them pseudofield opera
tors! which are the Fourier transforms of the convention
creation and annihilation operators. However, there are
eral essential differences between our method and the
proach of@11# ~apart from the different systems to be qua
tized!. First, we start with the original ~i.e., not
approximated! classical dynamical system. Second, we int
duce the soliton as a quasiparticle. Third, we conside
highly rarified gas of quasiparticles in the quasiclassical li
~while in @11# the Hartree approximation for a photon g
was exploited!. Finally, the quantum ES emerges as a ma
element of the creation operator applied to the vacuum s
@12# ~notice that in the classical theory envelope solitons
not necessarily real!. If, however, one considers an ES as
excitation of the displacement field~seeun below!, then the
quantum ES appears to be an observable.

Speaking about quantization of the ES, one can iden
one essential feature of the quantum model. In the class
theory the ES amplitude~and frequency detuning! is not a
fixed value~see, e.g.,@7#!. That is why the energy associate
with the classical ES is not a fixed quantity. The quant
problem has a scale defined by the Planck constant:
natural to expect that the excitation characterized by the
quencyv will have energy\v. Taking into account that the
linear oscillator energy is given bymv2A2 ~herem is a mass
andA is the amplitude! one concludes that the amplitude
the quantum ES must be of the order ofl5A\/vm. On the
other hand the amplitude of the soliton must be small.
order to specify this last requirement, let us assume that
interaction energy of neighboring sites isU(x) and define
the characteristic scale of the energy variation:L
;$u@1/U(x)#@d2U(x)/dx2#u%21/2. Then the relation betwee
the nonlinear and linear terms in the classical model is
order (A/L)2. It is this value that appears to be a small p
rameter in the classical theory, or more preciselyA/L!1.
Then substituting the estimate for the amplitude obtain
above on the basis of the quantum approach one gets
requirement\/vmL2!1 as a condition for the validity o
the small amplitude expansion. Scaling out all the quanti
and assuming that the characteristic spatial size of the e
tation is 1,L;1, we conclude that the effective small p
rameter of the problem is\, i.e., we are dealing with the
quasiclassical limit.

We consider quantization of a one-dimensional mo
atomic lattice described by the Hamiltonian

H5
1

2 (
n

pn
2

m
1

1

2 (
n1 ,n2

K2~n1 ,n2!xn1
xn2

1
1

4 (
n1 , . . . ,n4

K4~n1 , . . . ,n4!xn1
•••xn4

, ~1!

wherexn andpn5mẋn are displacements of atoms from the
equilibrium positions and their linear momenta, a
K2(n1 ,n2) andK4(n1 , . . . ,n4) are linear and nonlinear rea
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force constants. The overdot hereafter stands for the der
tive with respect to time. We concentrate on the case of fo
coefficients symmetric with respect to permutation of t
indices, e.g.,K2(n1 ,n2)5K2(n2 ,n1). Also it is assumed tha
(n1

K2(n1 ,n2)50.
First of all we recall some facts of the theory of line

lattices. Consider vibrations of a one-dimensional~possibly
disordered! lattice described by the Hamiltonian

H5
1

2 (
n

pn
2

mn
1

1

2 (
n,l

K~n,l !xnxl ~2!

wheremn is the mass of thenth atom andK(n,l )5K( l ,n)
are real force constants. It is convenient to introduce n
dependent variablesun5Amnxn and force constantsJ( l ,n)
5K( l ,n)/Amlmn. The equation of motion reads

ün1(
l

J~n,l !ul50. ~3!

It will be assumed that the lattice consists ofN, N@1,
atoms and is subject to cyclic boundary conditions. Then
~3! can be associated with the linear spectral probl
@cq(n)5cq(n1N)#

(
l

J~n,l !cq~ l !5vq
2cq~n!, ~4!

where the real eigenvaluesvq
2 are squared eigenfrequencie

and q denotes the eigenmodes. Eigenfunctionscq(n) and
c̄q(n) correspond to the same eigenfrequency~the overbar
stands for complex conjugation!. Introducing the matrixJ
with the elementJ(n,l ) placed at thenth row andl th col-
umn, a ket vector uq%5col„ . . . ,cq(n21),cq(n),cq(n
11), . . .…, and a bra vector $qu5„ . . . ,c̄q(n
21),c̄q(n),c̄q(n11), . . .…, we rewrite the eigenvalue
problem ~4! in the form Juq%5vq

2uq%. We assume thatvq

5v2q , i.e., c̄q(n)5c2q(n). cq(n) constitute an orthonor-
mal complete set $quq8%5(nc̄q(n)cq8(n)5dq,q8, and
(qc̄q(n)cq( l )5dn,l ~hered l ,n is the Kronecker delta!.

The quantization of lattice~3! can be reduced, first, to th
problem of diagonalization of the matrixJ and, second, to
the quantization of independent linear oscillators. In norm
ized variables the kinetic energy is written in the for
$puI up% where up%5col( . . . ,pn21 ,pn ,pn11 , . . . ), pn

5u̇n is the momentum conjugate toun , and I is the unit
matrix. Thus any matrix diagonalizing the potential ener
will preserve the diagonal form of the kinetic energy. T
provide diagonalization of the potential energy we constr
an N3N matrix C5( . . . ,uqj 21%,uqj%,uqj 11%, . . . ) ~here
numbering of the discrete eigenvalues is introduced!. As is
clearJC5CV2, where

V5diag~ . . . ,vqj 21
,vqj

,vqj 11
, . . . !,

i.e., the matrixC diagonalizesJ: C21JC5V2. If one rep-
resentsuu%5CuX% and$uu5$XuC21 where
6-2
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uu%5col~ . . . ,un21 ,un ,un11 , . . . !

and

uX%5col~ . . . ,Xqj 21
,Xqj

,Xqj 11
, . . . !

is a column matrix of the normal coordinates withXq

5X̄2q , the potential energy will take the form$XuV2uX%.
Finally

H5
1

2
$PuP%1

1

2
$XuV2uX%, ~5!

whereuP%5col( . . . ,Pqj 21
,Pqj

,Pqj 11
, . . . ) is related to the

representationup%5CuP%.
In order to quantize the linear disordered lattice one int

duces phonon annihilation and creation operators

âq5Avq

2\
X̂q1

i

A2\vq

P̂2q ,

~6!

âq
†5Avq

2\
X̂q2

i

A2\vq

P̂q ,

whereX̂q and P̂q are operators of thec numbersXq andPq
satisfying the canonical commutation relations. Then
Hamiltonian is reduced to the conventional formĤ l

5(q\vq(âq
†âq1 1

2 ). The operators of displacements and
linear momenta read

ûn5(
q
A \

2vq
@cq~n!âq1c̄q~n!âq

†#,

~7!

p̂n52 i(
q
A\vq

2
@cq~n!âq2c̄q~n!âq

†#.

Let us introduce Schro¨dinger pseudofield operatorsac-
cording to the relations

ĉn5(
q

cq~n!âq , ĉn
†5(

q
c̄q~n!âq

† . ~8!

They describe creation and annihilation of a quasiparticle
siten. We emphasize the main distinguishing feature of th
operators compared with the canonical field operators:cq(n)
is an eigenfunction of the classical problem rather tha
wave function.

It is not difficult to verify that

âq5(
n

c̄q~n!ĉn , âq
†5(

n
cq~n!ĉn

† , ~9!

and there exist commutation relations

@ĉn1
,ĉn2

#5@ĉn1

† ,ĉn2

† #50, @ĉn1
,ĉn2

† #5dn1 ,n2
.

The operator of number of quasiparticles is given by
06660
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q

âq
†âq5(

n
ĉn

†ĉn . ~10!

Finally, following the conventional procedure we introdu
the Heisenberg pseudofield operator

Ĉn~ t !5expS i
Ĥt

\
D ĉnexpS 2 i

Ĥt

\
D . ~11!

It solves the equation

]2

]t2
Ĉn~ t !1(

l
J~n,l !Ĉ l~ t !50. ~12!

Let us now consider a nonlinear lattice with the classi
Hamiltonian ~1! after the renormalizationJ2(n1 ,n2)
5K2(n1 ,n2)/m and J4(n1 , . . . ,n4)5K4(n1 , . . . ,n4)/m2.
To obtain the explicit form of the quantum Hamiltonian w
assume that the definition~7! holds in the nonlinear case. W
substitute the operators of displacement and linear mom
tum ~7! into the Hamiltonian, and express the result throu
the pseudofield operators, rearranging the last in normal
der and dropping the constant that corresponds to the en
of the lattice vacuum. ThenĤ5Ĥ01Ĥ int . The operatorĤ0
has the form

Ĥ05 (
n1 ,n2

Sn1 ,n2
Ĉn1

† Ĉn2
5(

q
\vqâq

†âq ~13!

with the kernelSn1 ,n2
5(q\vqcq(n1)c̄q(n2). Now cq(n) is

an eigenfunction andvq is a frequency of the ‘‘nonlinear’’
eigenvalue problem. The ‘‘nonlinearity contribution
emerges from the ordering procedure. More precisely,
eigenvalue problem~4! is now considered with the kernel

J~n,l !5J2~n,l !1Jd~n,l !, ~14!

whereJ2(n,l ) is the force constant of the underlying line
lattice and the ‘‘deformation’’Jd(n,l ) is given by

Jd~n1 ,n2!5
3\

2vq
(

q
(
l 1 ,l 2

J4~n1 ,n2 ,l 1 ,l 2!cq~ l 1!c̄q~ l 2!.

The interaction potentialĤ int has the form

Ĥ int5(
n

Sn1n2n3n4
@Ĉn1

Ĉn2
Ĉn3

Ĉn4
1Ĉn1

† Ĉn2
Ĉn3

Ĉn4

1Ĉn1

† Ĉn2

† Ĉn3
Ĉn4

1Ĉn1

† Ĉn2

† Ĉn3

† Ĉn4

1Ĉn1

† Ĉn2

† Ĉn3

† Ĉn4

† #

with the kernel
6-3
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Sn1n2n3n4
5

\2

16 (
q

(
l

J4~ l 1 ,l 2 ,l 3 ,l 4!

Avq1
vq2

vq3
vq4

cq1
~ l 1!cq2

~ l 2!

3cq3
~ l 3!cq4

~ l 4!c̄q1
~n1!c̄q2

~n2!

3c̄q3
~n3!c̄q4

~n4!.

In the small amplitude limit which corresponds to smallJ4 ,
Ĥ int can be considered as a perturbation. That is why
introduce pseudofield operators in the interaction represe
tion Ĉn

(0)(t) by formula~11! whereĤ0 is used instead ofĤ.

Then one can verify thatĈn
(0)(t) solves Eq.~12! with J(n,l )

given by Eq.~14!.
In order to show how the ES comes out from the abo

approach we note that the ES solution corresponds to
situation when only one quasiparticle is excited in the latti
In what follows quasiparticles corresponding to frequenc
inside the spectral band of the linear lattice,vP@0,v0)
where v0 is the cutoff frequency of the underlying linea
lattice, are called phonons, while excitations withv.v0

will be referred to as solitons. ThenĈ5Ĉph1Ĉs .
Let us introduce the notationunq1

, . . . ,nqN
& for the wave

function of a state whennqj
quasiparticles with wave numbe

qj are excited. Then the ‘‘one-soliton’’ state, when there e
ists only one eigenvaluevs bigger thanv0, is u0, . . . ,0;1&
andcs(n)5^0, . . . ,0;0uĈu0, . . . ,0;1& @we use the notation
cs(n)[cq5p/a , vs5vq5p/a#. In order to obtaincs we re-
write Eq. ~4! in the form

vs
2cs~n!5(

m
cs~m!J2~n,m!1

3\

2vs

3 (
m1 ,m2 ,m3

J4~n,m1 ,m2 ,m3!cs~m1!

3c̄s~m2!cs~m3!. ~15!

As long as the small amplitude limit is under consideratio
the frequencyvs is close to the cutoff frequency of the un
derlying linear lattice,v0, and one can introduce a sma
parametere (e!1) through the relationvs

22v0
25e2v0

2

where e252(vs /v021) is the frequency detuning towar
the forbidden zone.

We look for the solution of Eq.~15! in the form

cs~n!5eA2vs

3\
wnA~en!, ~16!
e-
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where wn is the eigenvalue of the problem for the perfe
linear lattice, i.e.,J(n,l )5J2(n,l ) in Eq. ~4!. Then expand-
ing A„e(n2 l )… ~here l depends on the number of neare
neighbors interacting with the given atom! in a Taylor series
with respect toe l , introducing x5ean ~treated as a con
tinuum spatial variable!, and taking into account thatcs(n
2 l )5cs(n1 l ), one arrives at

2
a2

2 (
n1 ,n2

~n12n2!2J2~n1 ,n2!w̄n1
wn2

]2A

]x2

1(
n

J4~n1 , . . . ,n4!wn1
w̄n2

wn3
w̄n4

uAu2A5v0
2A,

which is obtained for a monochromatic solution of the on
dimensional nonlinear monatomic lattice within the fram
work of conventional multiscale analysis@7#.

The results obtained agree with the known ones. In p
ticular, it has been shown that for the given nonlinearity t
frequency of the quantum soliton is fixed by the normaliz
tion condition @11#. This condition definese introduced in
Eq. ~16! and must be computed for each lattice separately
is clear, however, that in any case the result givese;A\,
which shows the consistency of the expansion. On the o
hand, this result does not contradict the existence of a nar
soliton band, which was explained in@3,9,11# with the help
of different arguments. Indeed, the quantum ES is charac
ized not only by the ‘‘carrier wave’’ frequency but also b
frequency smearing which is of the order
(\/m)3/2v0

21/2L3. Our results agree also with recent findin
in the classical statistical mechanics of nonlinear syste
namely, it is well known that bosons display the tendency
creating clusters~see, e.g.,@13#!. This means that creation o
a phonon and a quantum ES sufficiently close to each o
will end up in clustering of the two quasiparticles. This c
be viewed as absorption of the phonon by the soliton. T
phenomenon was observed recently in numerical exp
ments@14#. Finally, to leading order with respect to the no
linearity, solitons and phonons are noninteracting obje
Interaction is taken into account in higher orders of t
expansion.
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