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Quantization of weakly nonlinear lattices: Envelope solitons
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A method of quantizing weakly nonlinear lattices is proposed. It is based on introducing “pseudofield”
operators. In this formalism quantum envelope solitons together with phonons are regarded as elementary
quasiparticles making up a boson gas. In the classical limit the excitations corresponding to frequencies above
a linear cutoff frequency are reduced to conventional envelope solitons. The approach allows one to identify a
guantum soliton that is localized in space and to understand the existence of a narrow soliton frequency band.
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One of the most important tasks of the modern physics o€.g.,[8]). In the case where a small parameter can be iden-
atomic lattices is the experimental observation of the nonlintified as coupling between neighbor sites quantization can be
ear localized excitations that are believed to exist. Althougtperformed by the method proposed[@]. The role of the
in specially prepared chains of coupled oscillators such exeoupling constant magnitude in the context of quantum lat-
citations have been obtained experimentdlly, in the mi-  tices was discussed [iB].
croscopic world their observation is hardly possible in a di- In the present article we concentrate on quantization of a
rect way. A report on the observation of intrinsic localized nonlinear lattice when the small parameter is the nonlinear-
modes, although in a magnetic model, appeared only rejty, thus allowing the existence of ES’s in the classical limit.
cently [2]. This raises the problem of construction of the The appropriate physical limit can be interpreted as opposite
statistical me_chanics qf npnlinear Iattice_s covering both Ii_n~t0 the one considered ifB]. Also, in contrast to previous
ear and nonlinear excitations and allowing one to describgy,gies of nonintegrable quantum nonlinear lattices, the ES
the contribution of the localized modes to macroscgpiea- appears to be a dynamical object, and thus allows one to
surable characteristics of solids. As a first step one has O onstruct a kinetic theory of interacting solitons and
provide the quantization of the atomic chains. ghonons.

Anharmonic quantum lattices have been considered in th There are several points to be reflected by the theory. It
literature. Of two approaches developed so far, one can . . i '
classified following[3] as the number state methf@] and bﬁas been establlshe_d that qua.ntum nonlinear Iattllces.have a

well pronounced soliton band in the spectrum which is ex-

the quantum inverse scattering tecniddé Another method | ¢ . i . Thi h
based on exact numerical diaganonalization of a Hamiltoniaff €Mely narrow for a given non inearif]. This means that

was developed ifi5,6], where breather modes were obtainedthe associated obje_ct can be un_ambiguously identi_fied either
in a lattice with #* on-site potentia[5] and in a coupled &S an ES or as an intrinsic Iocallze_d mode C!eper_lqllng_ on the
electron-phonon  system(6], both nonintegrable. The value of the frequenc_y. Another point is the |dent|_f|cat|on of
breather modes were identified through the spectra and dybe quantum ES, which must go beyond computing the fre-
namic correlation functions. guency alone. Indeed, an important difference between an
The approaches mentioned deal with nonlinear quanturFS and a phonon is that the soliton is spatially localized
Hamiltonians givera priori. An alternative and somewhat while the phonon is localized only in momentum space. Thus
complementary way of introducing quantum systems iswe intend to obtain a quantum soliton as an object, a quasi-
quantization that starts with a classical Hamiltonian. As isparticle, localized in spacé possible method of construc-
evident, canonical quantization, i.e., substitutioncafium-  tion of such wave packets is described[Bl). This is in
bers by their operators satisfying canonical commutation reeontrast to the quantization used in field thef9], where a
lations, can be provided formally in the case of nonlinearkink, being a topological object, is considered as a vacuum
lattices also. However, in a generic situation this method isstate. Finally, an important property of the classical theory is
not tractable either analytically or numerically. that ES’s are governed in leading order by the nonlinear
At the same time, methods for the analytical descriptionSchralinger equation7], which means that in leading order

of nonlinear classical lattices are well elaborated today. Theyhey do not interact with linear phonons and can be regarded
are based on introducing different small parameters and reas independent quasiparticles. Thus in leading order the
sult in various spatially localized excitations. Among themquantum theory must allow one to introduce creation and
we mention envelope solitor(&S’s) (see, e.g.[7]), which  annihilation operators for the quantum soliton and neglect its
appear when the wave amplitude is considered as a smaflteractions with other quasiparticles. In this way the inter-
parameter, and intrinsic localized modes or breatlise®, action Hamiltonian will naturally appear as a perturbation

and thus the gas of interacting quasiparticles—solitons and

phonons—can be considered within the conventional pertur-

*Electronic address: konotop@alfl.cii.fc.ul.pt bation technique of field theory.
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We note that the approach developed below has somrce constants. The overdot hereafter stands for the deriva-
points similar to one proposed [i1] for quantum optical tive with respect to time. We concentrate on the case of force
solitons. In particular, the quantum ESJ[itl] is described in  coefficients symmetric with respect to permutation of the
terms of the field operatorsve call them pseudofield opera- indices, e.g.K,(n;,n,)=K,(n,,n;). Also it is assumed that
tors) which are the Fourier transforms of the conventionaIEanz(nl,nZ):O.
creation and annihilation operators. However, there are sev- Fjrst of all we recall some facts of the theory of linear

eral essential differences between our method and the apsttices. Consider vibrations of a one-dimensio@ssibly
proach of[11] (apart from the different systems to be quan-gjsordere lattice described by the Hamiltonian
tized. First, we start with the original (i.e., not

approximategclassical dynamical system. Second, we intro- 1 p2
duce the soliton as a quasiparticle. Third, we consider a H=§ 2 m
highly rarified gas of quasiparticles in the quasiclassical limit noon

(while in [11] the Hartree approximation for a photon gaswheremn is the mass of theth atom andk(n,1)=K(I,n)

was exploited Finally, the quantum ES emerges as a matrixare real force constants. It is convenient to introduce new
element of the creation operator applied to the vacuum Statgependent variables, = Jm.x, and force constantd(l,n)
[12] (notice that in the classical theory envelope solitons are K(1.n)/Jmm.. Th n ’t‘ n £ moti d ’
not necessarily reallf, however, one considers an ES as an (I,m)/mm,. The equation of motion reads
excitation of the displacement fieldeeu,, below), then the
guantum ES appears to be an observable. ijn+2 J(n,lHu,=0. 3
Speaking about quantization of the ES, one can identify '
one essential feature of the quantum model. In the classical
%&i%%;n;ése?Zg?&%?_é?-ﬂgtfirs (\:}vuh(;nt(;]ye deitgrggfsggéi;[ed atoms and is subje(;t to cyc!ic boundgry conditions. Then Eq.
with the classical ES is not a fixed quantity. The quantu (3) can be associated with the linear spectral problem
problem has a scale defined by the Planck constant: it i Ya(n)=dg(n+N)]
natural to expect that the excitation characterized by the fre-
guencyw will have energy: w. Taking into account that the > J(n,|)¢q(|)=w§¢q(n), (4)
linear oscillator energy is given hyw?A? (heremis a mass !
andA is the amplitudg one concludes that the amplitude of ) _ )
the quantum ES must be of the ordenof \7i/om. On the where the real elgen\_/alueaﬁf1 are sqgared e|genfrequenC|es
other hand the amplitude of the soliton must be small. I21d d denotes the eigenmodes. Eigenfunctighgn) and
order to specify this last requirement, let us assume that th#(n) correspond to the same eigenfrequelitye overbar
interaction energy of neighboring sites ifx) and define stands for complex conjugatipnintroducing the matrixJ
the characteristic scale of the energy variatioh: With the element(n,l) placed at thenth row andlth col-
~{|[1/U(x)][d2U(x)/dx?]|} Y2 Then the relation between umn, a ket vector|g}=col(. .. q(N—1),¢q(n),¢qe(n
the nonlinear and linear terms in the classical model is of+1),...), and a bra vector {q|=(... WPg(n

order (A/L)2. It is this value that appears to be a small pa‘—l)ﬂq(n),gq(nJrl), ...), we rewrite the eigenvalue

rameter in t.he.classical theory, or more preqisAAL«l._ problem (4) in the formJ|q}=w§|q}. We assume thab,,
Then substituting the estimate for the amplitude obtained = .
above on the basis of the quantum approach one gets the® -9’ €., Yig(N) = ¥/—q(N). ¥g(n) consitute an orthonor-
requirementi/omL2<1 as a condition for the validity of ™Mal complete set{q|q'}=Xq(n) ¢ (N)=dqq, and
the small amplitude expansion. Scaling out all the quantitieS q#/4(N) ¥4(1) = 6, (hered , is the Kronecker delta

and assuming that the characteristic spatial size of the exci- The quantization of latticé3) can be reduced, first, to the
tation is 1,L~1, we conclude that the effective small pa- problem of diagonalization of the matrix and, second, to

rameter of the problem i%, i.e., we are dealing with the the quantization of independent linear oscillators. In normal-

+ % 2' K(n,1)XxyX, (2)

It will be assumed that the lattice consists.of A>1,

guasiclassical limit. ized variables the kinetic energy is written in the form
We consider quantization of a one-dimensional mon{w|l|7m} where |m}=col(..., 71,7, Tns1,...), T
atomic lattice described by the Hamiltonian =u, is the momentum conjugate t,, and! is the unit

matrix. Thus any matrix diagonalizing the potential energy

1 pﬁ will preserve the diagonal form of the kinetic energy. To
H=3 > mts > K2(N1,N2)Xy Xn, provide diagonalization of the potential energy we construct
" M1z an VXN matrix W=(...,[q;-1},|9;},|Qj+1}, - . .) (here
1 numbering of the discrete eigenvalues Is introducéd is
7 N > 5 Ka(Ny, .o Ng)Xn - X, (1) clearJW=WO?, where
Q=diag ... g 0q Qg s - - O,

wherex,, andp,=mx, are displacements of atoms from their
equilibrium positions and their linear momenta, andi.e., the matrix¥ diagonalizes): ¥~ 1J¥= Q2. If one rep-
K,(n1,n,) andK,(ny, ... ,n,) are linear and nonlinear real resentdu}=w|X} and{u|={X|¥ ! where

066606-2



QUANTIZATION OF WEAKLY NONLINEAR LATTICES: ... PHYSICAL REVIEW E 63 066606

|u}=col( ...,uy_1,Up,Ups1,---) R=S éé 2 W 10
and d

[X}=col( ... D RN CHD CR Finally, following the conventional procedure we introduce
i—1 ] j+1 . .
the Heisenberg pseudofield operator

is a column matrix of the normal coordinates wiky,

=X_,, the potential energy will take the forgX|Q?|X}. . At . At
Finally Tt =exp) i | dnex —i 5 (19
1 1 _
H= E{P| P}+ E{X|QZ|X}, (5 It solves the equation
where|P}=col(...,Pq ,Pq.,Pq ., ...) isrelated to the & . -
-1 J j+1 J— =
representatiomsr} = W|P}. &t2q’“(t)+2| Jn,D¥(H=0. (12)

In order to quantize the linear disordered lattice one intro-

c honon annihilation and creation rator . . . . .
duces phonon a 0 de on operators Let us now consider a nonlinear lattice with the classical

” i Hamiltonian (1) after the renormalizationJ,(n,n,)
ag= \ /2;,:)“<q+7|57q, =Ky(ny,n)/m and Ju(ny, ... ng)=Ky(ny, . .. ,_n4)/_m2.
V2hawg To obtain the explicit form of the quantum Hamiltonian we
(6)  assume that the definitigi@) holds in the nonlinear case. We
- Wqe i substitute the operators of displacement and linear momen-
3= V3%~ T Pq, tum (7) into the Hamiltonian, and express the result through
“q the pseudofield operators, rearranging the last in normal or-

der and dropping the constant that corresponds to the energy

whereX, and P, are operators of the numbersX, and P ) N ~
; h P ; q f the lattice vacuum. TheH=H,+ H,,,. The operatoH,

satisfying the canonical commutation relations. Then th

Hamiltonian is reduced to the conventional fordﬁ, as the form
=3 hwq(alag+3). The operators of displacements and of i i
linear momenta read Hoznlz;1 \If; Eq‘, wqdiag (13
=2 \/iw (Mag+ig(n)at] 7
q 20 O AT TAD with the kernelS, == qf wqiq(N1) g(n2). Now y(n) is
(7) an eigenfunction andy, is a frequency of the “nonlinear”
- ) ho A — . eigenvalue problem. The “nonlinearity contribution”
-y q t : .
Tn= "1 - —5 L¥q(Mag— dg(n)ag]. emerges from the ordering procedure. More precisely, the

eigenvalue probleni) is now considered with the kernel
Let us introduce Schuobnger pseudofield operatorac-

cording to the relations J(n,H)=J,(n,1)+J4(n,1), (14)
a=, wq(n)éq, yh=> Eq(n)éT. (8)  WhereJy(n,l) is the force constant of the underlying linear
q d lattice and the “deformation’Jy(n,l) is given by
They describe creation and annihilation of a quasiparticle at
siten. We emphasize the main distinguishing feature of these j,(n; ,n,)= — E > Ja(ng,no,ly, 2)%('1)%('2)-
operators compared with the canonical field operatggén) l1.02
is an eigenfunction of the classical problem rather than a
wave function. _ The interaction potentiafl;,, has the form
It is not difficult to verify that
- - . R N N T I T Ot O A
aq=; o(N) iy, a;=; lﬂq(n)lﬂx, (9) Hi”t_; 8”1”2”3”4[\1,”1\?”2\1,”3\1,”4—’_qj”lqinqu”sqj%
Ot A Ottt A
and there exist commutation relations +q}nqunzq’naq’"ﬁq’ﬂqunzq,nsq’fu
A~ A IO A oa Gt Gt Gt gt
[9nys ) =100 5 1=0, [hn .1, 1= Sn, W, o, Wi, ]
The operator of number of quasiparticles is given by with the kernel
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52 Ja(l1,15005,00) where ¢, is the eigenvalue of the problem for the perfect
= linear lattice, i.e.J(n,1)=J,(n,1) in Eq. (4). Then expand-

Sy =16 & 2 —————— g, (1) ¥g,(12)
4 1 \oq,0q,0q,0q, ing A(e(n—1)) (herel depends on the number of nearest
neighbors interacting with the given atpim a Taylor series

X g, (13) thq,(12) g, (N1) g, (N2) with respect toel, introducingx=ean (treated as a con-
_ _ tinuum spatial variable and taking into account thatg(n

X g, (N3) P, (Na). —1)=y¢(n+1), one arrives at

Ip the small amplitude limit which corresponds to smai| 2 - 2A

Hint can be considered as a perturbation. That is why we S (nl—nz)zJZ(nl,n2)¢nl(pn2—2

introduce pseudofield operators in the interaction representa- Ny.Nz IX

tion ¥ (°)(t) by formula(11) whereH, is used instead dfl. -

Then one can verify tha? (9)(t) solves Eq(12) with J(n,I) +; J4(N1, -+ Na) @, P, @n @, |AIPA= wiA,

given by Eq.(14).
In order to show how the ES comes out from the above
approach we note that the ES solution corresponds to th
situation when only one quasiparticle is excited in the lattice.
In what follows quasiparticles corresponding to frequencieé’v
inside the spectral band of the linear latticee[0,wq)
where wq is the cutoff frequency of the underlying linear
lattice, are called phonons, while excitations with> wq

hich is obtained for a monochromatic solution of the one-
imensional nonlinear monatomic lattice within the frame-
ork of conventional multiscale analydig].

The results obtained agree with the known ones. In par-
ticular, it has been shown that for the given nonlinearity the
frequency of the quantum soliton is fixed by the normaliza-

. ) P - tion condition[11]. This condition defines introduced in

will be referred to as solitons. Thel ="V, +Ws. Eq. (16) and must be computed for each lattice separately. It
Let us introduce the notat|o|rmql, - - Mg, for the wave is clear, however, that in any case the result gives\%,

function of a state when,, quasiparticles with wave number which shows the consistency of the expansion. On the other

q; are excited. Then the “one-soliton” state, when there ex-hand, this result does not contradict the existence of a narrow

ists only one eigenvalueg bigger thanw, is |0, . ..,0;1 soliton band, which was explained [8,9,11 with the help

and (n)=(0, ...,0;4¥|0, ...,0;1) [we use the notation of different arguments. Indeed, the quantum ES is character-
Ps(N)=hq— nja, ®s=®q- -al. In order to obtainys we re- ized not only by the “carrier wave” frequency but also by
write Eq. (4) in the form frequency smearing which is of the order of

(1/m)*2wy Y23, Our results agree also with recent findings

) 3 in the classical statistical mechanics of nonlinear systems,
wss(N)= % #s(m)Ja(n,m)+ 20, namely, it is well known that bosons display the tendency of
creating cluster¢see, e.g.[13]). This means that creation of
a phonon and a quantum ES sufficiently close to each other
Xml’mEZ'ms J4(n,my, Mz, mMg) hs(my) will end up in clustering of the two quasiparticles. This can
be viewed as absorption of the phonon by the soliton. This
X h(My) the(My). (15  phenomenon was observed recently in numerical experi-

ments[14]. Finally, to leading order with respect to the non-
As long as the small amplitude limit is under consideration linearity, solitons and phonons are noninteracting objects.
the frequencyws is close to the cutoff frequency of the un- Interaction is taken into account in higher orders of the
derlying linear lattice,w,, and one can introduce a small expansion.

parametere (e<1) through the relationw?— wi=e’w]
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